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In this paper we present the solution to the differential equations system correspond- 
ing to the problem of multistep processes and systems with several components when a 
programmed current-time function is applied to planar and spherical electrodes. The 
analytical solutions have been obtained in both cases, by a recurrent procedure, which 
facilitates the numerical determination of results. This solution has been found for an 
expanding spherical electrode, since by using simple substitutions it is transformed into 
that corresponding to a stationary spherical electrode, to an expanding plane electrode 
or to a stationary plane electrode. 

1. I n t r o d u c t i o n  

F rom the point  of  view of  both  electrochemistry and chemical kinetics, the s tudy 
of  electrode processes in which oxidation or reduction reactions take place in sev- 
eral steps is of  great interest. Thus, for example, fullerenes in general and C60 in par- 
ticular can present up to five reversible one electron reductions [1,2]. 

The theoretical s tudy of  electrode processes that involve several successive steps 
in electrochemical techniques with controlled current is a very old one [3,4]. 
However ,  those papers which tackled these processes when a determined current  is 
applied to an electrode have only considered the case of  planar diffusion. Yet  plane 
electrodes are not  the most  suitable for the study of  such processes owning to their 
poor ly  reproducible surface which tends to accumulate contaminat ion on the elec- 
t rode-solut ion interface. More  suitable, as is well known, are those electrodes of  
spherical geometry,  such as the dropping mercury electrode (DME)  and the static 
mercury  electrode (SMDE),  which show a clean, perfectly reproducible and con- 
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tamination-free surface. Moreover, by using a time-variable current in this last type 
of electrodes, it is possible to eliminate most of the double layer effects if we work 
with not very high concentrations of electroactive species and/or  small electrode 
radii. 

The main aim of this paper is to find a general analytical expression for the 
response of this type of electrode processes in chronopotentiometry with a pro- 
grammed current. This technique consists of applying a current that is a known 
function of time through a function generator. Due to the fact that in chronopo- 
tentiometry the response obtained (potential-time curve) is a function of the con- 
centrations of species participating in the surface of the electrode, it is possible, 
by determining the analytical expressions for these concentrations, to character- 
ize the process thermodynamically and kinetically by analysis of the variation of 
the potential over time [5]. We have also deduced the expression corresponding 
to the response obtained for the system of several components whose deduction 
turns out to be much simpler than that corresponding to multistep processes. 

The general study we present is applicable to small spherical electrodes of con- 
stant and variable area (SMDE and DME, respectively) and to planar electrodes, 
such as a stationary plane and the expanding plane electrode model for the DME. 
The solution for this type of problem is not easy. Nevertheless, certain situations do 
exist where it is easy to obtain such expressions for these cases. In these situations, a 
problem of k steps can be treated as k independent problems of only one step. To 
this end, we must demonstrate that not only is the system of equations posed linear 
but so is also the boundary value problem and, therefore, this can be expressed in 
the same general form for any step; i.e. the superposition principle is fulfilled [6,7]. 
Taking into account the above considerations, we have deduced general expres- 
sions for the concentrations of species participating in the different steps in terms of 
distance and time for the electrode models mentioned above. 

From these general expressions, we obtain expressions which correspond to 
the concentrations at the surface of the electrode by substituting in them r -- r0 
(for spherical diffusion) or x = 0 (for planar diffusion). Once the surface concen- 
trations have been obtained, the potential-time response of the process is 
deduced immediately by substituting them in the Butler-Volmer equation or in 
the Nernst equation, depending on whether the charge transfer process is irrever- 
sible or reversible. 

Due to the fact that these solutions have been obtained by a recurrent procedure 
based only on the linearity of the operators and on the related boundary value prob- 
lem, they are independent of the method applied in solving the systems of differen- 
tial equations participating in the first step. Moreover, the recurrent form of the 
solutions facilitates numerical determination of the results corresponding to the 
different steps. 

Furthermore, using simple substitutions, the solution found for the expanding 
spherical electrode (DME) transforms into that corresponding to a stationary 
spherical electrode, to an expanding plane electrode or to a stationary plane elec- 



A. Molina et al. / Application o f  the superposition principle. I 153 

trode. Thus, it can be concluded that for these processes, the superposition principle 
is fulfilled in chronopotentiometry for different geometries and for whatever the 
values of the diffusion coefficients of the participating species may be. 

2. Theory  

Let us suppose that species O1 is reduced in k stages in line with the following 
scheme: 

4, Ox + n le -02  , 

02 + n2e- 03 , 

Oj + nje-Oj+l , 

z 

Ok + nke- Olc+l , 

E O 
(I) 

E•k " 

Process (I) can only be studied with techniques using programmed current for 
the case in which the reduction potentials for the individual charge transfer steps 
are sufficiently well separated so that the chronopotentiometric response or poten- 
tial-time curve shows perfectly defined k waves, each of which corresponds to indi- 
vidual steps in the overall process [4]. In any other case the initial and boundary 
conditions of this problem cannot be established reliably in terms of time. 

If we apply a cathodic current-time function I(t) of the form 

I(t) = IotUe wt with I0 > O,u>>.O,w>~O, (1) 

when O1 is the only species initially present in the solution - which contains an 
excess of any electrolyte so that transport through conduction need not be taken 
into account -  mass transport from the bulk of the solution to the electrode surface, 
for process (I), is described by the differential equation system 

~o, C o , = O  for i = l , 2 , . . . , k + l ,  (2) 

where ~o, is the diffusion transport operator given by Fick's second law. For an 
expanding spherical electrode (i.e., the dropping mercury electrode, DME) the 
above operator is given by [8,9] 

~ o, -- O-t Do, ~ r-~r + 0---;' (3) 

where Do, is the diffusion coefficient of species Oi and v is the convection velocity 
of the electrode whose value is given by 
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~3 
v = 3r 2 (4) 

with ¢ being the radius of the DME for t~ = 1 s (see Notations and definitions). 
If in eq. (3) the following change in variable is introduced: 

x = r - ~t  1/3 , (5) 

and if it is supposed that the thickness of the diffusion layer, which is of the order 
of DV/~,t, is substantially less than the radius of the sphere and the second term in 
the square brackets on the right hand side of (3) is neglected, then this equation 
becomes [9] 

0 0 2 2x 0 
~OJ - o t  D o ,  o x  2 3t  O x  " (6) 

This operator corresponds to the model of the planar electrode in the expansion 
for the DME, which has been widely used for this electrode. 

For stationary or constant area electrodes, the convective term must be 
removed, which yields 

0 [0220] 
8 o ,  - (7) 

for a stationary spherical electrode, from eq. (3), and yields 

0 02 
~o, -- Ot Do, o x  2 (8) 

for a stationary planar electrode, from eq. (6). 
As the operators defined by eqs. (3) and (6)-(8) are linear, the system of differen- 

tial equations (2) is linear in all cases [7]. In this paper, we consider the operator cor- 
responding to a DME (eq. (3)) since it is the most complex and, it is possible to 
deduce solutions which correspond to remaining, simpler models (eqs. (6)-(8)) as 
particular cases of the solutions found for eq. (2). 

We will suppose that by using a function generator [10] we apply the current-time 
function given by eq. (1), which is reduced to a power function of time when co = 0 
( I ( t )  = I o # ) ,  to an exponential function of time when u = 0 ( I ( t )  = Ioe~t) ,  and to a 
current step or constant current when u = co = 0 ( I ( t )  = I0). In general, this cur- 
rent-time function must be used after a blank period, if it is applied to dynamic elec- 
trodes such as the DME. This blank period has no physical significance in 
stationary electrodes (eqs. (7) and (8)). 

In order to analyse the response of process (I) to the application of a pro- 
grammed current given by eq. (1), we will suppose, as hitherto expounded, that the 
normal potentials corresponding to the different steps fulfill the condition 

E~°j_I << E~j << E~0j+l (9) 
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and that stepj takes place during a time tj (0 <~ tj <~ ~-oj), TOj being the transition time 
of species Oj. When tj = ~'oj, the electrode surface concentration of species Oj 
becomes zero. We must keep in mind, moreover, that the reduction of Oj (species 
produced in stepj - 1) is accompanied by the reduction of the previousj - 1 species 
(01,  02, . . . ,  Oj-O, whose surface concentrations are null, due to their correspond- 
ing transition times (To,, "1o,..., 7oj_~ ) having been already reached. When the tran- 
sition time of step j ,  TOj, is reached, the potential evolves to values of the order of 
E~j+I, for which species Oj+l (produced in step j)  starts to be reduced. 

Thus, the total time elapsed from the application of the current to s tepj  is given 
by 

t = TO~ + TO2 + . . .  + "rOj_~ + tj, } (10) 
O <~ tj <~ TOj . 

For any step prior to j ,  tj = 0, while for any step after j ,  tj is constant (= "roj). 
Bearing in mind the above, the boundary value problem for the first step 

(0 ~< tl ~< 7o,), supposing that there is no accumulation of matter at the electrode sur- 
face, is given by 

t l=0 ; r>~r0 ,  ~ C~),(r,t)=C*o~, (11) 

tl > 0 ; r - - - ~ o e , f  C ~ , ( r , t ) = O ,  i = 2 , 3 , . . . k + 1 ,  

tl > 0; r = r0, 

with 

{ OC'o, ) ( OC o2 ) Zo, e " 
DO, \ l - ~ r  = -Do2  } \ - - ~ r  Jr=r ° -- nlFA(ts)  

r ~ r  0 

(12) 

A(ts) = Ao~/3 , (13) 

ts = top + t l .  (14) 

Henceforth, the superscript in the concentrations of different Oj species (with 
j = 1, 2, . . .  k + 1) refers to the number of the step being considered (see Notations 
and definitions). 

The problem for the first step given by eq. (2) for i = 1, 2 and eqs. (11)-(14) has 
been solved in a previous paper [11] in which solutions C~), (r, t) and C~) 2 (r, t) were 
obtained. The particular values of these solutions at the surface of the electrode, 
C~, (r0, t) and C~) 2 (r0, t), are given in Appendix (eqs. (A. 1) and (A.2)). The transi- 
tion time for the first step, to,, is attached when C~)~ (r0, TO, ) = 0. For tl = To,, the 
potential evolves to values of the order of E~2 and it is then that the reduction of spe- 
cies 02 occurs. 

In the second step, the species participating are O1, 02 and 03 (see scheme (I)). 
As differential equations (2) are linear, any linear combination of their solutions 
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is also a solution for them. Thus, we will suppose that C 2, (r, t), C22(r , t) and 
C 2  (r, t) have the form 

C~, (r, t) = CO, (r, t) + (7~, (r, t), ] 
C22(r't) = cl°2(r't) + (722(r't)' I (15) 

c~,(r,t) = ~(~,t) 
where t = 7o~ + t2 and t~ = top + t, with 0 ~< t2 ~< ~-o2, C~, (r, t) and C~  (r, t) are the 
solutions found in ref. [11] for the first step and (72, (r, t), (72o2 (r, t) and (7~3 (r, t) are 
the new unknown quantities to be determined in this second step. 

The boundary value problem for the second step is given by 

tz=O;r>>-ro, } C2,(r,t)=C~,(r,t),C22(r,t)=C12(r,t), (16) 

t2 > 0; r ~ c~, C~3 (r, t) = 0, 

t2 ~> O ; r = r  O, 

C~,(ro, t) = 0 ,  (17) 

( ac2°' ) [ '0C22) Z°tUeWt (18) 

+ D°2n2 ~--~r r=r0 -- FA(ts) ' 

with 

( OC2o, ) ( OC o2 ) / OC2o, 
° 

D°'k, Or Jr=ro+D°2\~Jr=ro + = (19) 

ts = tbp + ~-0, + t2. (20)  

Condition (17) refers to the fact that for t > To,, the surface concentration of spe- 
cies O1 is zero for any step after the first one. Eqs. (18) and (19) refer to the surface 
flow produced by the current applied and the non-accumulation of matter at the 
electrode surface, respectively. 

By introducing eqs. (15) into eqs. (16)-(19) and taking into account that 
C~, (r, t) and C~2 (r, t) fulfill condition (12) for any t, we obtain the following simpli- 
fied initial and limit conditions for the second step; these conditions have the 
advantage that they have null initial values: 

t2 =O;r>~ro, 
C ~ , ( r , t ) = 0 ,  i = 1 , 2 , 3 ,  (21) 

t2 > O;r--~ cx~, ) 

t 2 > O;r---- ro, 
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C2o, (ro, t ) = -c lo,  (ro, t) , (22) 

Do,(nl+n2)(OC2o~) {" 0C22~ 
+ Do2n2 1 = 0 

\ Or Jr=r0 \ Or Jr=to 
(23) 

Z D o ,  = 0 .  (24) 
i=1 \ Or ,/ r=ro 

This problem has been recently solved for a dropping mercury electrode [12] 
and the solutions for this step, C2o,(r,t), C2o2(r,t) and C~3(r,t ), are given in 
Appendix (eqs. (A. 16)-(A. 18)) for r = r0. Furthermore, the expression correspond- 
ing to the second transition time, to2, is given in eq. (A.22). 

For t = ro~ + to2 + t3 (with 0 ~< t 3 ~< 7"O~), the third step takes place and species 
03 is reduced. 

For this step, the concentrations of the implicated species O1, 02, O~ and O4, 
can be written in the following way: 

C 3, (r, t) = C 2, (r, t) + C30, (r, t), ] 

C 3 (r, t) = C~2(r, t) + C32 (r, t) 
o2 , (25) 

C30,(r,t) = C20,(r,t) + (733(r, t ) , 

C30,(r,t) = C34(r,t). 

As the transition times of O1 and 02 have already been attached, for the surface 
electrode the following must be fulfilled: 

C 3, (ro, t) = C32 (ro, t) = 0. (26) 

Taking into account eqs. (26), (17)-(19) and also eqs. (25), the boundary value 
problem for the third step is given by 

t3=O;r>~ro, ~ - C3,( r , t ) = 0 ,  i = 1 , . . . , 4 ,  (27) 

t3 > 0;r ---~ oo, J 

t3 > 0 ; r = r 0 ,  

0 = o,  (28) 

C73o2(ro, t) = -C2o2(ro, t), (29) 

Z D o ,  n, k---~-r ) = 0 ,  
i= 1 r=ro 

(30) 
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4 :0~30i~ 

Y ~ O o ' ~ - - ~ t  Jr=ro (31) 

For any stepj f> 2, the linearity of the system of equations (2) enables us to write 
in general 

CJo~(r,') = CJo-jl(r,t) + CJoj(r,t), } 

CJo,+, (r, t) = e)oy+, (r, t) 

with 

t = ro~ + . . .  + roj_~ + tj. 

(32) 

(33) 

Taking into account that for any intermediate stepj > 1, the condition 

CJol (ro, t) = cJ2 (ro, t ) . . . . .  cJj_~ (ro, t) = 0 (34) 

for the previousj - 1 steps is fulfilled, sincej - 1 transition times have already been 
attached, it is easily demonstrated by induction that the boundary value problem is 
only dependent on the unknown quantities Co, (i = 1, 2, . . . j  + 1) and on the con- 
centration of the speciesj - 1 in the previous step. These are given in the following 
general form for any intermediate stepj with 3 ~<j ~< k and t given by eq. (33): 

tj = O; r >~ ro , 
/ c'Ji(r,t) = 0  i = l , . . . , j + l ,  (35) 

t />  O;r-~ c~, ) 

tj > O;r = ro, 

,(ro, t )=O,  i = 1 , 2 , . . . , j - 2 ,  

= , i - 1  - Coi_, (ro, t ) ,  

Z D o ,  nt \ Or J = 0 ,  
i= 1 r=ro 

(36) 

(37) 

(38) 

ar ) (39) 
i= 1 r=ro 

Therefore, forj>~3, the superposition principle is fulfilled [7] since the general 
expressions for the boundary value problem for any stepj with 3 ~<j ~< k (eqs. (35)- 
(39)) are identical to those for the third step (eqs. (27)-(31)), i.e. we have reduced a 
problem of k steps to one of k independent problems of only one step. Taking into 
account the solutions found for the first and second steps and conditions (35)-(39), 
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we deduce that the concentrations of the different species for j  >1 2 are given by the 
following recurrent general expressions: 

CJoj (ro , t ) = cJ-j l ( ro , t ) + Tj_ l d nj- l + nJ cJo-jll ( ro , t ) GJoj_l ,oj , (40) 
nj 

cJj+, (r0, t) = -'yj-l#'+l- - t:oj_l (ro, t)GJoj_l,oj+t, (41) 
nj-i ,- . j- l ,  

where G/o,,o~ series is given by eq. (A.23) and 7i,t is given in Notations and defini- 
tions. 

Owing to the simplicity ofeqs. (40) and (41) and the easiness of their calculation 
implied by their recurrent form, they offer important advantages in finding the con- 
centrations of the different intermediate species and the different transition times. 
The calculation of the transition time of stepj is immediate, since it suffices to make 
C~9 j (r0, t) = 0 in eq. (40) with t = ~-o~ + ~'o2 + . - -  + To~. 

3. P a r t i c u l a r  c a s e s  

( a f Spherical electrodes with Do, = Do2 . . . . .  D oj+l 

In this case the following is fulfilled: 

7 i , t = l  with i = l , 2 , . . . , j - 1  and l = ( i + l )  or ( i + 2 ) ,  (42) 

and the GJoi,o ' series for the intermediatej step is simplified to 

G/o ,o ,= l  with i = j - 1  and l = j o r j + l  (43) 

The general expressions for the surface concentrations (eqs. (40) and (41)) and 
the transition time for stepj are notably simplified. In this case, the following is ful- 
filled for any value of r and t: 

CJo~ (r, t) + CJo2 (r, t) + . . .  + cJj+~ (r, t) = C*o~ , (44) 

and taking into account the expressions for C1 (r0, t) and C~2 (ro, t) given by eqs. 
(A. 1) and (A.2), eqs. (40) and (41) take the simpler form 

• _ _  _ _  _ _  * t u + l / 2  

CJol(ro, t) ~--];~=l ni C* nl Co Ns .~ /3SDME,O, ,  (45) 
nj o, nj ts 

t) - -   L--I n, C* "'  * tu+'/2 nj o~ + - -  - - S D M E ,  O~ (46) - -  nj C°'N" t 2/3 

with 
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ts = tbp + TO1 + 7-02 + . . .  + 7-oj_1 + tj. (47) 

SDME,O, is given by eq. (A.5), t by eq. (33) and Ns by eq. (A.3). 
In order to deduce the transition time of step j,  we impose cJj(ro, "co, + ~-o~ 

+ - - -  + ~-oj) = 0ineq.  (45), obtaining 

(TO1 "I- TO 2 -'}- • . . q- 7"0)) u+l/2 __ ~-~J=l ni 
- ( 4 8 )  

(tbp Jr- 7-01 nt- . . . n t- TOj) 2/3 n l N s S D M E , O ,  ' 

where SDME,O~ has to be calculated for t = To, + ro~ + . .  • + ~-oj. 
The expression for the transition time corresponding to a stationary spherical 

.~ ,2/3 electrode of constant area A = ~O'bp is obtained by introducing the condition 
tbp >> t in eq. (48), 

with 

_ , , u + l / 2  
('to1 + "to2 + . . .  + io~) = 

2/0 
Ns n,FAv/-ff~l C, Ol 

and SSMDe, O~ is given by eq. (A. 14). 

~-~J=l ni 

nlNsSsMDE, O, 
(49) 

(50) 

(b ) Planar electrodes and any value of  Do, 

To obtain the general expressions for planar electrodes, we have imposed 
r0 ~ oo such that eq. (43) is fulfilled for any value of the diffusion coefficients. It is 
also fulfilled for any value of distance x, 

" ' "  O l  " 

( 5 1 )  

This equation is valid for the stationary planar electrode model (eq. (8)) and for 
the expanding plane electrode model (eq. (6)). This equation was obtained by Testa 
and Reinmuth [3] for a three step process and only for the case of stationary plane 
electrodes and when I(t) is constant. 

If we apply the condition r0 ~ oo to eqs. (40) and (41), we obtain the expressions 
for the surface concentrations of the @ and Oj+l species corresponding to the 
expanding plane electrode model, 

_ __  t u+l/2 
cJ j (x  = O, t) -- "/,,/Y]'{=I ni C* n ' h ' I j C * o N s - - S E p E  (52) 

nj o, nj t2/3 ' 

cJ j+ ,  ( x  ~- O, t )  = - ' f f l d + l  ~ 1  ni C* nl * tu+l/2 
nj o~ + ~ j " t l j + I C o ~ N s ~ S E t ' E ,  

ts 
(53) 
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where SERe is given by eq. (A. 13). 
The expression for the transition time of the j step is obtained by making 

CJoj(X = O,'ro, + "co2 + . . .  + roj) = 0ineq. (52), 

(7"01 "t" 7 " 0 2  q "  • - - ~ -  TOj) u+l/2 'J __  ~- '~i=1 /'/i 

(tbp -t- 7"0, nt- . . .  q- TO1) 2/3 n lNsSepe  ' (54) 

where SeRe has to be calculated for t = "co, + To2 + • •. + "%. 
The equation for the transition time for the case of a stationary planar electrode 

of constant area A = Aot~¢ 3 is obtained by making tbp >> t in eq. (54), 

+ + . . .  +  oj) "+1/: - Y2 =1 n, 
nl N * S s e e  ' (55) 

where Sspe  is given by eq. (A. 15). 
For the particular case of a potential current-time function (a; -- 0; I( t)  = 10P), 

eq. (55) becomes 

(TO, + TO2 + . . .  + TOj) u+l/2 Pu,O,1 ~-'~=1 ni 
l , /1 /V.  , (56) 

wherepu,0,1 is given by eq. (A.12) with h = 0. The right hand side ofeq. (56) is con- 
stant for a given value of u. This equation was deduced by McDonald [4] for a cur- 
rent step (u = 0) for which 

P0,0,1 = v'~. (57) 

4. Multicomponents systems 

The reaction scheme in this case is given by 

O1 + n l e -  ~-  R l  , E~l , 

02 n t- nze-  ~ R2 , E~2 , 

Oj + nje-  +~- Rj , E~j , (II) 

Following a similar procedure to the one given above, it is possible to generalize 
the boundary value problem for any stepj > 2 in the following way: 

t j = O ; r ) r o ,  ~ C J o i ( r , t ) = C J ( r , t ) = O ,  i = l , . . . , j ,  (58) 
tj > O; r--~ oe ,  ) 
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tj > O;r = r0, 

CJ(ro, t)=O, i = 1 , 2 , . . . j - 2 ,  (59) 

(r0, t) = (r0, t ) ,  (60) 

Do, ni \  Or J = 0 ,  (61) 
i=1 r=ro 

Do i~ - -~r  )r=r ° : - D R i \  r=ro , i :  1,2,...j. (62) 

The solution to this problem is simpler than the previous one due to the absence 
of reaction intermediates which might complicate the overall process (see scheme 
II). Under these conditions, the surface concentration expressions for species Oj 
and Rj, cJj(ro, t) and cJj(ro, t) are glven by 

CJo~(ro, t) = C* ~ nj-1 CJo_jl_~(ro, t)C, Joj_,,oj, (63) 

C~,(ro, = ~ rlj-I Cs-jl_I(Fott)GJoj_I,R j . (64) 
-V 

C/o~_1,Rj in eq. (64) is also given by eq. (A.23) by changing Dot to DRt. 

5. N o t a t i o n s  and definitions 

/0 
cgj(r,t) 
Doj 
F 

rO 

rnl-zg and d 
tbp 

normal reduction potential of thej th  step, 
number of electrons transfered in thejth step, 
value of I(t) at u = co = O, 
concentration profiles of species Oj in thejth step (l ~>j), 
diffusion coefficient of species Oj, 
distance from the center of the spherical electrode, 

electrode radius at time ts (= ~t 1/3) for a DME, 
constant electrode radius for a SMDE, 

electrode radius at ts = 1 s for a DME, 
rate of flow and density of mercury, 
blank period used only for a DME, 
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tj 

ts 
A(ts) 
Ao 
A 

DME 

SMDE 

EPE 
SPE 

time elapsed between current application and the j th  step (= tl for 
the first step and t = ~-o, + .. .  + TOj_, + tj for anyjth step withj  > 1), 
time during which thejth step takes place (0 ~< tj < TOj), 
transition time of species Oj for which the condition 
CJoj(ro, TO, + . . .  + TOj) = 0 is fulfilled, 
total time (= t@ + t), 
time dependent electrode area ofa DME (= Ao~/3), 
= (47r) z/3 (3mHg/d) 2/3 in cm 2 s -2/3, 

2/3 electrode area (= Aotbp ) when tbp >> t (static spherical or planar elec- 
trodes), 
= v/Do,/Do,  with i = 1, 2 , . . .  k - 1 and l = i + 1 or i + 2, 
dropping mercury electrode for which the expanding sphere electrode 
model (eq. (3)) and the expanding plane electrode model (eq. (6)) are 
used, 
stationary spherical electrode model or static mercury dropping elec- 
trode (eq. (7)), 
expanding plane electrode model (for the DME), 
stationary plane electrode. 

Other definitions are conventional. 
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Appendix 

A. 1. FIRST STEP 

By using the dimensionless parameters method, we obtain [1 l] the following 
expressions for the surface concentrations of the O1 and O2 species for the first step, 
corresponding to the expanding sphere electrode model (eq. (3)): 

( tu+l/2 ) 
Clo~ (ro, t) = C* 1 - N~ ~ SDM~,O~ , (A.1) 

o, ts 

, t u+l/2 
Clo2 (ro, t) = Co, 71,2Ns ~ SOME,02. (A.2) 

ts 

Moreover, 
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2/o 
Ns= 

nlFv/-~, AoC~, 
(A.3) 

(A.4) 

~{8(h,~) 
SDME'Ot = Pu,h,1 

( )2 I 2 DX/-~t 1 2 ~  J2(h, fl) f2 h 
70 J,~(h, fl) + \ ro ] P.,h,1 j h! ' 

(A.5) 

(A.6) 

t .] ~/3 
f l  = \ tbp q------~t J ' 

(A.7) 

~(h, 
fu(h, 

J~(h, 

[3) = 1 + A°(h)fl 3 + B~u(h)fl 6 -[- C ~ u ( h ) f l  9 -'[- • • . , ] 

fl) = A l ( h )  q- n l ( h ) f l  3 + C l ( h ) ~  6 q- . . .  , 

2 3 ~) = A2(h) + Bu(h)9 +..., 
(A.8) 

A°(h) = 1/3(2u + 2 h +  3), ] 

7/[12(2u+2h + 3)(2u+2h + 5)], 

= 20/[9(2u + 2h + 3)(2u + 2h + 5)(2u + 2h + 7)], 

(A.9) 

A~(h) = 1/2(u+h+ 1), ] 

B~(h) 1/[8(u+h+l)(u+h+2)],  

C~1 (h) = 9/[32(u + h + 1)(u + h + 2)(u + h + 3)1 , 

(A.10) 

A~(h) = 1/[2(2u + 2h + 3)1 , / 

f B2(h) 1/[(2u+2h+3)(2u+Zh+5)], 
(A.11) 

Pu,h,1 =P2u+2h+l = 

2u + 2h + 1) 
2P 1+  2 

r ( 1 4  2 u + 2 h + l ) 2  
(A.12) 
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Eqs. (A.1) and (A.2) are valid for u~>0 and w~>0 for the current-time function 
involved. 

A. 1.1. Part icular  cases o f  S-series  
(a) If r0 ~ oe, the above expressions are simplified notably and become those 

corresponding to an expanding plane electrode (EPE). So, eq. (A.5) is simplified 
to 

= 

f~h 

h=0 Pu,h,1 h--~. (A.13) 

(b) By making tbp >> t in eqs. (A. 1) and (A.2), we obtain the expressions corre- 
sponding to a stationary sphere electrode model (SMDE) of area A A ,2/3 = ~OLbp . In this 
situation, eq. (A.5) becomes 

f 1 3 2X//-D~lt 

h=0 P2u 2(6u + 6h + 6) r0 

+ 2(6u + 6h + 9)p2u+2h+l r0 J 

9 ( 2  D~--~/t~ 3 } 
- - -  + . . . .  ( 1 . 1 4 )  

4(6u + 6h + 6)(6u + 6h + 12) r0 J 

(c) If r0 ~ oo and tbp >> t, we deduce equations corresponding to a static plane 
electrode (SPE) of area A = .aO,bpA .2/3 and eq. (A.5) is transformed to 

1 f~h 
SspE = ~-~P2,,+2h+l h! " (A.15) 

A.2. SECOND STEP 

We deduced for the second step (0 ~< t2 ~< 7"02) the following expressions for the 
surface concentrations of the participating species [12]: 

C2 (ro, t) = 0 ,  (A.16) 

nl +n2 
C22(ro, t) = C~2(ro, t) + 3'1,2 Clo~(ro, t)G2o,,o 2 , (A.17) 

n2 

with 

nl 1 2 
C2o3 (ro, t) = -3'1,3 ~ Co, (ro, t )G ol,o 3 (A.18) 

t = ro~ + t2, (A.19) 
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G 2 = 1 - (1 -  71,1){ 4 Dx/-D--~t2 o,,o, ~,'o (1_ ~(,~)~+...) 
Do, t 2 ( l l  3 

r~ ~(~2) + . . . )} ,  (A.20) 

t2 ) 1/3 
A2 = (A.21) 

tbp + 701 + t2 
By making C22(r0, 7-o, + 7-02) = 0 in eq. (A.17) we obtain the expression for the 

transition time for the second step, 

nl + n2 G2 
Oi ,02 (7"01 -I- 7"02) u+l /2 n2 

= . ( A . 2 2 )  

(tbp +7"0, +7"02) 2/3 Ns[ nl n2+n2 GZ"o2SDME'O' --SDME02] 

A.3. STEPj 

For step j ,  the GJo,,ot series in the surface concentrations of the species Oj and 
Oj+l, CJo.(r0, t) and C'~,.. (r0, t), is analogous to the series given by eq. (A.20) by 
changin~ t2 and A2 to tj ~tnd Aj, with 

G J ° " ° l = l - ( 1 - ' T i ' t ) f 4 ~ (  L x/~ro "" )  

Do, t j (1 1 ) }  ~-~--~(Aj) 3 + . . .  , j>~2, (A.23) 

( tj )1/3 
= (A.24) 

Aj tbp + 7-O, + . . . + rOj_, + tj 

A. 3.1. Particular cases of G series 
(a) Making tbp >> t in eq. (A.23) we obtain the expression for the Cr",, ,, series cor- t~,,c,t 2/3 

responding to a stationary sphere electrode model (SMDE) of area A = Aotbp, 

Gio, o = l - ( 1 - ~ / i , l ) ( 1 - e x p ( D ° ' t J ~  e r f c ( ~ ~ } .  (A.25) 
- T o ;  r0 j 

(b) For planar electrodes (r0 ~ cx~) or for planar and spherical electrodes with 
"yi,l = 1 (Do, = Do~ for any i and I), we obtain 

Cflo,,o ' = 1. (A.26) 
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